Q1. - (Topic 1)
Which term describes a spanning-tree network that has all switch ports in either the blocking or fowarding state?
A. converged
B. redundant
C. provisioned
D. spanned
Answer: A
Explanation:
Spanning Tree Protocol convergence (Layer 2 convergence) happens when bridges and switches have transitioned to either the forwarding or blocking state. When layer 2 is converged, root bridge is elected and all port roles (Root, Designated and Non-Designated) in all switches are selected.
Q2. - (Topic 3)
What is the purpose of LCP?
A. to perform authentication
B. to negotiate control options
C. to encapsulate multiple protocols
D. to specify asynchronous versus synchronous
Answer: B
Explanation:
In order to be sufficiently versatile to be portable to a wide variety of environments, PPP provides a Link Control Protocol (LCP). The LCP is used to automatically agree upon the encapsulation format options, handle varying limits on sizes of packets, detect a looped-back link and other common misconfiguration errors, and terminate the link. Other optional facilities provided are authentication of the identity of its peer on the link, and determination when a link is functioning properly and when it is failing.
Reference: Link Control Protocol
http://www.ietf.org/rfc/rfc1661.txt
Q3. - (Topic 2)
Refer to the exhibit.
From R1, a network administrator is able to ping the serial interface of R2 but, unable to ping any of the subnets attached to RouterB. Based on the partial outputs in the exhibit, what could be the problem?
A. EIGRP does not support VLSM.
B. The EIGRP network statements are incorrectly configured.
C. The IP addressing on the serial interface of RouterA is incorrect.
D. The routing protocol has summarized on the classful boundary.
E. EIGRP has been configured with an invalid autonomous system number.
Answer: D
Explanation:
CCNA - EIGRP Common Question Reference:
http://www.orbitco-ccna-pastquestions.com/CCNA---EIGRP-Common-Question.php
Explanation:
If you look carefully at the R2 ip route, you will discover that the R2 does not learn any network from R1; this is because the routing protocol used here (EIGRP) performs auto summary when advertising routes to peers across a network. So in this case the address 172.17.0.0/16 is a summarized address. If the router was configured with no auto summary command, R2 LAN addresses would have been advertised and reached.
Q4. - (Topic 3)
A network administrator needs to configure a serial link between the main office and a remote location. The router at the remote office is a non-Cisco router. How should the network administrator configure the serial interface of the main office router to make the connection?
A. Main(config)# interface serial 0/0 Main(config-if)# ip address 172.16.1.1 255.255.255.252 Main(config-if)# no shut
B. Main(config)# interface serial 0/0 Main(config-if)# ip address 172.16.1.1 255.255.255.252 Main(config-if)# encapsulation ppp Main(config-if)# no shut
C. Main(config)# interface serial 0/0 Main(config-if)# ip address 172.16.1.1 255.255.255.252 Main(config-if)# encapsulation frame-relay Main(config-if)# authentication chap Main(config-if)# no shut
D. Main(config)# interface serial 0/0 Main(config-if)#ip address 172.16.1.1 255.255.255.252 Main(config-if)#encapsulation ietf Main(config-if)# no shut
Answer: B
Explanation:
Cisco High-Level Data Link Controller (HDLC) is the Cisco proprietary protocol for sending data over synchronous serial links using HDLC. So HDLC runs only in Cisco router. PPP is not proprietary protocol it's a open source every cisco router and non-cisco router understand the PPP protocol.So we need to configure the PPP protocol if connection is between cisco and non-cisco router.
Q5. - (Topic 1)
At which layer of the OSI model is RSTP used to prevent loops?
A. physical
B. data link
C. network
D. transport
Answer: B
Explanation: RSTP and STP operate on switches and are based on the exchange of Bridge Protocol Data Units (BPDUs) between switches. One of the most important fields in BPDUs is the Bridge Priority in which the MAC address is used to elect the Root Bridge , RSTP operates at Layer 2. http://www.cisco.com/en/US/tech/tk389/tk621/technologies_white_paper09186a0080094cf a.shtml
Q6. - (Topic 3)
Users have been complaining that their Frame Relay connection to the corporate site is very slow. The network administrator suspects that the link is overloaded. Based on the partial output of the Router # show frame relay pvc command shown in the graphic, which output value indicates to the local router that traffic sent to the corporate site is experiencing congestion?
A. DLCI=100
B. last time PVC status changed 00:25:40
C. in BECN packets 192
D. in FECN packets 147
E. in DF packets 0
Answer: C
Explanation:
First we should grasp the concept of BECN & FECN through an example:
Suppose Router A wants to send data to Router B through a Frame Relay network. If the network is congested, Switch 1 (a DCE device) will set the FECN bit value of that frame to 1, indicating that frame experienced congestion in the path from source to destination. This frame is forwarded to Switch 2 and to Router B (with the FECN bit = 1). Switch 1 knows that the network is congesting so it also sends frames back to Router A with BECN bit set to 1 to inform that path through the network is congested.
In general, BECN is used on frames traveling away from the congested area to warn source devices that congestion has occurred on that path while FECN is used to alert receiving devices if the frame experiences congestion.
BECN also informs the transmitting devices to slow down the traffic a bit until the network returns to normal state. The question asks “which output value indicates to the local router that traffic sent to the corporate site is experiencing congestion” which means it asks about the returned parameter which indicates congestion ->BECN.
Q7. - (Topic 3)
The command frame-relay map ip 10.121.16.8 102 broadcast was entered on the router. Which of the following statements is true concerning this command?
A. This command should be executed from the global configuration mode.
B. The IP address 10.121.16.8 is the local router port used to forward data.
C. 102 is the remote DLCI that will receive the information.
D. This command is required for all Frame Relay configurations.
E. The broadcast option allows packets, such as RIP updates, to be forwarded across the PVC.
Answer: E
Explanation:
The command frame-relay map ip 10.121.16.8 102 broadcast means to map the remote IP
10.121.16.8 to the local DLCI 102. When the “broadcast” keyword is included, it turns Frame Relay network as a broadcast network, which can forward broadcasts.
Q8. - (Topic 3)
Refer to the exhibit.
The show interfaces serial 0/1 command was issued on the R10-1 router. Based on the output displayed which statement is correct?
A. The cable connected to the serial 0/1 interface of the R10-1 router is a DTE cable.
B. The R10-1 router can ping the router interface connected to the serial 0/1 interface.
C. The clock rate used for interface serial 0/1 of the R10-1 router is 1,544,000 bits per second.
D. The CSU used with the serial 0/1 interface of the R10-1 router has lost connection to the service provider.
E. The interface of the remote router connected to the serial 0/1 interface of the R10-1 router is using the default serial interface encapsulation.
Answer: E
Explanation:
Cisco High-Level Data Link Controller (HDLC) is the Cisco proprietary protocol for Cisco HDLC is the default encapsulation type for the serial interfaces.
Q9. - (Topic 1)
Refer to the exhibit.
Given the output shown from this Cisco Catalyst 2950, what is the reason that interface FastEthernet 0/10 is not the root port for VLAN 2?
A. This switch has more than one interface connected to the root network segment in VLAN 2.
B. This switch is running RSTP while the elected designated switch is running 802.1d Spanning Tree.
C. This switch interface has a higher path cost to the root bridge than another in the topology.
D. This switch has a lower bridge ID for VLAN 2 than the elected designated switch.
Answer: C
Explanation: These four parameters are examined in order to make root bridge , root port , designated port. Other switch has lowest Sending Bridge ID or Sending Port ID so vlan 2 is not the root port.
1. A lower Root Bridge ID2. A lower path cost to the Root3. A lower Sending Bridge ID4. A lower Sending Port ID
Q10. - (Topic 2)
Which two statements describe the process identifier that is used in the command to configure OSPF on a router? (Choose two.)
Router(config)# router ospf 1
A. All OSPF routers in an area must have the same process ID.
B. Only one process number can be used on the same router.
C. Different process identifiers can be used to run multiple OSPF processes
D. The process number can be any number from 1 to 65,535.
E. Hello packets are sent to each neighbor to determine the processor identifier.
Answer: C,D
Explanation:
The areas can be any number from 0 to 4.2 billion and 1 to 65,535 for the Process ID. The process ID is the ID of the OSPF process to which the interface belongs. The process ID is local to the router, and two OSPF neighboring routers can have different OSPF process IDs. (This is not true of Enhanced Interior Gateway Routing Protocol [EIGRP], in which the routers need to be in the same autonomous system). Cisco IOS Software can run multiple OSPF processes on the same router, and the process ID merely distinguishes one process from the other. The process ID should be a positive integer.
Q11. - (Topic 2)
What can cause two OSPF neighbors to be stuck in the EXSTART state?
A. There is a low bandwidth connection between neighbors.
B. The neighbors have different MTU settings.
C. The OSPF interfaces are in a passive state.
D. There is only layer one connectivity between neighbors.
Answer: B
Explanation:
Neighbors Stuck in Exstart/Exchange State The problem occurs most frequently when attempting to run OSPF between a Cisco router and another vendor's router. The problem occurs when the maximum transmission unit (MTU) settings for neighboring router interfaces don't match. If the router with the higher MTU sends a packet larger that the MTU set on the neighboring router, the neighboring router ignores the packet.0 When this problem occurs, the output of the show ip ospf neighbor command displays output similar that shown below: router-6# show ip ospf neighbor
Neighbor ID Pri State Dead Time Address Interface
170.170.11.7 1 EXCHANGE/ - 00:00:36 170.170.11.7 Serial2.7 router-6# router-7# show ip ospf neighbor
Neighbor ID Pri State Dead Time Address Interface
170.170.11.6 1 EXSTART/ - 00:00:33 170.170.11.6 Serial0.6
Reference: http://www.cisco.com/c/en/us/support/docs/ip/open-shortest-path-first-ospf/13684-12.html
Q12. - (Topic 2)
Refer to the exhibit.
Which two statements are true about the loopback address that is configured on RouterB? (Choose two.)
A. It ensures that data will be forwarded by RouterB.
B. It provides stability for the OSPF process on RouterB.
C. It specifies that the router ID for RouterB should be 10.0.0.1.
D. It decreases the metric for routes that are advertised from RouterB.
E. It indicates that RouterB should be elected the DR for the LAN.
Answer: B,C
Explanation: A loopback interface never comes down even if the link is broken so it provides stability for the OSPF process (for example we use that loopback interface as the router-id) - B is correct.
The router-ID is chosen in the order below:
The highest IP address assigned to a loopback (logical) interface. If a loopback interface is not defined, the highest IP address of all active router’s physical interfaces will be chosen.
-The loopback interface will be chosen as the router ID of RouterB - C is correct.
Q13. - (Topic 2)
Refer to the exhibit.
A packet with a source IP address of 192.168.2.4 and a destination IP address of 10.1.1.4 arrives at the AcmeB router. What action does the router take?
A. forwards the received packet out the Serial0/0 interface
B. forwards a packet containing an EIGRP advertisement out the Serial0/1 interface
C. forwards a packet containing an ICMP message out the FastEthemet0/0 interface
D. forwards a packet containing an ARP request out the FastEthemet0/1 interface
Answer: C Explanation:
CCNA - EIGRP Common Question http://www.orbitco-ccna-pastquestions.com/CCNA---EIGRP-Common-Question.php
Looking at the output above, there is no IP route for 10.1.1.4 address on AcmeB routing table. If the router can no find a specific path in its routing table to a particular route,( In this case no path is found so AcmeB) the router will inform the source host with an ICMP message that the destination is unreachable and this will be through the same interface it has received the packet (interface Fa0/0 network 192.168.3.0/28 from the exhibit).
Topic 3, WAN Technologies
Q14. - (Topic 2)
Which two are advantages of static routing when compared to dynamic routing? (Choose two.)
A. Configuration complexity decreases as network size increases.
B. Security increases because only the network administrator may change the routing table.
C. Route summarization is computed automatically by the router.
D. Routing tables adapt automatically to topology changes.
E. An efficient algorithm is used to build routing tables, using automatic updates.
F. Routing updates are automatically sent to neighbors.
G. Routing traffic load is reduced when used in stub network links.
Answer: B,G
Explanation:
When reading (or being lectured about) all the glorious details of dynamic routing protocols, it's hard not to come away with the impression that dynamic routing is always better than static routing. It's important to keep in mind that the primary duty of a dynamic routing protocol is to automatically detect and adapt to topological changes in the internetwork. The price of this "automation" is paid in bandwidth, security, and maybe queue space, in memory, and in processing time. A frequent objection to static routing is that it is hard to administer. This criticism may be true of medium to large topologies with many alternative routes, but it is certainly not true of small internetworks with few or no alternative routes. References: http://www.ciscopress.com/articles/article.asp?p=24090&seqNum=6 http://www.ciscopress.com/articles/article.asp?p=24090
Q15. - (Topic 2)
What are three characteristics of the OSPF routing protocol? (Choose three.)
A. It converges quickly.
B. OSPF is a classful routing protocol.
C. It uses cost to determine the best route.
D. It uses the DUAL algorithm to determine the best route.
E. OSPF routers send the complete routing table to all directly attached routers.
F. OSPF routers discover neighbors before exchanging routing information.
Answer: A,C,F
Explanation:
Open Shortest Path First Reference:
http://docwiki.cisco.com/wiki/Open_Shortest_Path_First
Explanation:
Additional OSPF features include equal-cost, multipath routing, and routing based on upper-layer type-of-service (TOS) requests. TOS-based routing supports those upper-layer protocols that can specify particular types of service. An application, for example, might specify that certain data is urgent. If OSPF has high-priority links at its disposal, these can be used to transport the urgent datagram.
OSPF supports one or more metrics. If only one metric is used, it is considered to be arbitrary, and TOS is not supported. If more than one metric is used, TOS is optionally supported through the use of a separate metric (and, therefore, a separate routing table) for each of the eight combinations created by the three IP TOS bits (the delay, throughput, and reliability bits). For example, if the IP TOS bits specify low delay, low throughput, and high reliability, OSPF calculates routes to all destinations based on this TOS designation. IP subnet masks are included with each advertised destination, enabling variable-length subnet masks. With variable-length subnet masks, an IP network can be broken into many subnets of various sizes. This provides network administrators with extra network-configuration flexibility.
Q16. - (Topic 1)
Which two states are the port states when RSTP has converged? (Choose two.)
A. discarding
B. listening
C. learning
D. forwarding
E. disabled
Answer: A,D
Explanation:
Understanding Rapid Spanning Tree Protocol (802.1w)
http://www.cisco.com/en/US/tech/tk389/tk621/technologies_white_paper09186a0080094cf a.shtml
Port States There are only three port states left in RSTP that correspond to the three possible operational states. The 802.1D disabled, blocking, and listening states are merged into a unique 802.1w discarding state. RSTP only has 3 port states which are discarding, learning and forwarding. When RSTP has converged there are only 2 port states left: discarding and forwarding.