300-135 Premium Bundle

300-135 Premium Bundle

Troubleshooting and Maintaining Cisco IP Networks (TSHOOT) Certification Exam

4.5 
(19095 ratings)
0 QuestionsPractice Tests
0 PDFPrint version
January 4, 2025Last update

Cisco 300-135 Free Practice Questions

Q1. - (Topic 6) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, and FHRP services, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

The fault condition is related to which technology? 

A. NTP 

B. Switch-to-Switch Connectivity 

C. Access Vlans 

D. Port Security 

E. VLAN ACL / Port ACL 

F. Switch Virtual Interface 

Answer:

Explanation: 

Since the Clients are getting an APIPA we know that DHCP is not working. However, upon closer examination of the ASW1 configuration we can see that the problem is not with DHCP, but the fact that the trunks on the port channels are only allowing VLANs 1-9, when the clients belong to VLAN 10. VLAN 10 is not traversing the trunk on ASW1, so the problem is with switch to switch connectivity, specifically the trunk configuration on ASW1. 

Topic 7, Ticket 2 : ACCESS VLAN 

Topology Overview (Actual Troubleshooting lab design is for below network design) 

. Client Should have IP 10.2.1.3 

. EIGRP 100 is running between switch DSW1 & DSW2 

. OSPF (Process ID 1) is running between R1, R2, R3, R4 

. Network of OSPF is redistributed in EIGRP 

. BGP 65001 is configured on R1 with Webserver cloud AS 65002 

. HSRP is running between DSW1 & DSW2 Switches 

The company has created the test bed shown in the layer 2 and layer 3 topology exhibits. 

This network consists of four routers, two layer 3 switches and two layer 2 switches. 

In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1. 

DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary. 

R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP's network. Because the company's address space is in the private range. 

R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network. 

ASW1 and ASW2 are layer 2 switches. 

NTP is enabled on all devices with 209.65.200.226 serving as the master clock source. 

The client workstations receive their IP address and default gateway via R4's DHCP server. 

The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2. 

In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6. 

DSW1, DSW2 and R4 are running RIPng process name RIP_ZONE. 

The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running over the underlying IPv4 OSPF domain. Redistrution is enabled where necessary. 

Recently the implementation group has been using the test bed to do a ‘proof-of-concept' on several implementations. This involved changing the configuration on one or more of the devices. You will be presented with a series of trouble tickets related to issues introduced during these configurations. 

Note: Although trouble tickets have many similar fault indications, each ticket has its own issue and solution. 

Each ticket has 3 sub questions that need to be answered & topology remains same. 

Question-1 Fault is found on which device, 

Question-2 Fault condition is related to, 

Question-3 What exact problem is seen & what needs to be done for solution 

Client is unable to ping IP 209.65.200.241 

Solution 

Steps need to follow as below:-

. When we check on client 1 & Client 2 desktop we are not receiving DHCP address from R4 

Ipconfig ----- Client will be getting 169.X.X.X 

. On ASW1 port Fa1/0/ 1 & Fa1/0/2 access port VLAN 10 was assigned which is using IP address 10.2.1.0/24 

Sh run ------- & check for running config of int fa1/0/1 & fa1/0/2 

==================================================== 

==================================================== 

. Here we are not able to see access Vlan10 configured for Port Fa1/0/1 & Fa1/0/2 

. Change required: On ASW1, for configuring Access Vlan under interface fa1/0/1 & 1/0/2 we have to enable command switchport access vlan 10 

Q2. - (Topic 2) 

A customer network engineer has made configuration changes that have resulted in some loss of connectivity. You have been called in to evaluate a switch network and suggest resolutions to the problems. 

Refer to the topology. 

SW1 Switch Management IP address is not pingable from SW4. What could be the issue? 

A. Management VLAN not allowed in the trunk links between SW1 and SW4 

B. Management VLAN not allowed in the trunk links between SW1 and SW2 

C. Management VLAN not allowed in the trunk link between SW2 and SW4 

D. Management VLAN ip address on SW4 is configured in wrong subnet 

E. Management VLAN interface is shutdown on SW4 

Answer:

Explanation: 

In the network, VLAN 300 is called the Management VLAN. Based on the configurations shown below, SW1 has VLAN 300 configured with the IP address of 192.168.10.1/24, while on SW4 VLAN 300 has an IP address of 192.168.100.4/24, which is not in the same subnet. 

Q3. - (Topic 8) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

On which device is the fault condition located? 

A. R1 

B. R2 

C. R3 

D. R4 

E. DSW1 

F. DSW2 

G. ASW1 

H. ASW2 

Answer:

Explanation: 

On R1, for IPV4 authentication of OSPF the command is missing and required to configure------ ip ospf authentication message-digest 

Q4. - (Topic 20) 

The implementation group has been using the test bed to do an IPv6 'proof-of-concept1.

After several changes to the network addressing and routing schemes, a trouble ticket has been opened indicating that the loopback address on R1 (2026::111:1) is not able to ping the loopback address on DSW2 (2026::102:1).

The fault condition is related to which technology?

A. NTP

B. IP DHCP Server

C. IPv4 OSPF Routing

D. IPv4 EIGRP Routing

E. IPv4 Route Redistribution

F. IPv6 RIP Routing

G. IPv6 OSPF Routing

H. IPV4 and IPV6 Interoperability

I. IPv4 layer 3 security

Answer: G

Explanation:

As explained earlier, the problem is with route redistribution on R4 of not redistributing RIP routes into OSPF for IPV6.

Q5. - (Topic 17) 

The implementations group has been using the test bed to do a ‘proof-of-concept' 

that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing schemes, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened DSW1 will not become the active router for HSRP group 10. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

The fault condition is related to which technology? 

A. NTP 

B. HSRP 

C. IP DHCP Helper 

D. IPv4 EIGRP Routing 

E. IPv6 RIP Routing 

F. IPv4 layer 3 security 

G. Switch-to-Switch Connectivity 

H. Loop Prevention 

I. Access Vlans 

Answer:

Explanation: 

On DSW1, related to HSRP, under VLAN 10 change the given track 1 command to instead use the track 10 command. 

Q6. - (Topic 10) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing schemes, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

On which device is the fault condition located? 

A. R1 

B. R2 

C. R3 

D. R4 

E. DSW1 

F. DSW2 

G. ASW1 

Answer:

Explanation: 

On R1 we need to add the client IP address for reachability to server to the access list that is used to specify which hosts get NATed. 

Q7. - (Topic 3) 

You have been brought in to troubleshoot an EIGRP network. A network engineer has made configuration changes to the network rendering some locations unreachable. You are to locate the problem and suggest solution to resolve the issue. 

R5 has become partially isolated from the remainder of the network. R5 can reach devices on directly connected networks but nothing else. What is causing the problem? 

A. An outbound distribute list in R3 

B. Inbound distribute lists in R5 

C. An outbound distribute list in R6 

D. Incorrect EIGRP routing process ID in R5 

Answer:

Explanation: 

Here we see that distribute list 3 has been applied to EIGRP on router R%, but access-list 3 contains only deny statements so this will effectively block all routing advertisements from its two EIGRP neighbors, thus isolating R5 from the rest of the EIGRP network: 

Topic 4, Troubleshooting HSRP 

13. - (Topic 4) 

Scenario: 

You have been asked by your customer to help resolve issues in their routed network. Their network engineer has deployed HSRP. On closer inspection HSRP doesn't appear to be operating properly and it appears there are other network problems as well. You are to provide solutions to all the network problems. 

Examine the configuration on R4. The routing table shows no entries for 172.16.10.0/24 and 172.16.20.0/24. Identify which of the following is the issue preventing route entries being installed on R4 routing table? 

A. HSRP issue between R4 and R2 

B. This is an OSPF issue between R4 and R2 

C. This is a DHCP issue between R4 and R2 

D. The distribute-list configured on R4 is blocking route entries 

E. The ACL configured on R4 is blocking inbound traffic on the interface connected to R2 

Q8. - (Topic 9) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

The fault condition is related to which technology? 

A. BGP 

B. NTP 

C. IP NAT 

D. IPv4 OSPF Routing 

E. IPv4 OSPF Redistribution 

F. IPv6 OSPF Routing 

G. IPv4 layer 3 security 

Answer: A Explanation: 

On R1 under router the BGP process Change neighbor 209.56.200.226 remote-as 65002 statement to neighbor 209.65.200.226 remote-as 65002 

Q9. - (Topic 7) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

The fault condition is related to switch technology? 

A. NTP 

B. Switch-to-Switch Connectivity 

C. Loop Prevention 

D. Access Vlans 

E. VLAN ACL Port ACL 

F. Switch Virtual Interface 

G. Port Security 

Answer:

Explanation: 

The problem here is that VLAN 10 is not configured on the proper interfaces on 

switch ASW1. 

Topic 8, Ticket 3 : OSPF Authentication 

Topology Overview (Actual Troubleshooting lab design is for below network design) 

. Client Should have IP 10.2.1.3 

. EIGRP 100 is running between switch DSW1 & DSW2 

. OSPF (Process ID 1) is running between R1, R2, R3, R4 

. Network of OSPF is redistributed in EIGRP 

. BGP 65001 is configured on R1 with Webserver cloud AS 65002 

. HSRP is running between DSW1 & DSW2 Switches 

The company has created the test bed shown in the layer 2 and layer 3 topology exhibits. 

This network consists of four routers, two layer 3 switches and two layer 2 switches. 

In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1. 

DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary. 

R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP's network. Because the company's address space is in the private range. 

R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network. 

ASW1 and ASW2 are layer 2 switches. 

NTP is enabled on all devices with 209.65.200.226 serving as the master clock source. 

The client workstations receive their IP address and default gateway via R4's DHCP server. 

The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2. 

In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6. 

DSW1, DSW2 and R4 are running RIPng process name RIP_ZONE. 

The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running over the underlying IPv4 OSPF domain. Redistrution is enabled where necessary. 

Recently the implementation group has been using the test bed to do a ‘proof-of-concept' on several implementations. This involved changing the configuration on one or more of the devices. You will be presented with a series of trouble tickets related to issues introduced during these configurations. 

Note: Although trouble tickets have many similar fault indications, each ticket has its own 

issue and solution. 

Each ticket has 3 sub questions that need to be answered & topology remains same. 

Question-1 Fault is found on which device, 

Question-2 Fault condition is related to, 

Question-3 What exact problem is seen & what needs to be done for solution 

===================================================================== ========== 

Client is unable to ping IP 209.65.200.241 

Solution 

Steps need to follow as below:-

. When we check on client 1 & Client 2 desktop we are not receiving DHCP address from R4 

Ipconfig ----- Client will be receiving IP address 10.2.1.3 

. IP 10.2.1.3 will be able to ping from R4 , R3, R2 but not from R1 

. Check for neighborship of ospf sh ip ospf nei ----- Only one neighborship is forming with R2 & i.e. with R3 Since R2 is connected to R1 & R3 with routing protocol ospf than there should be 2 neighbors seen but only one is seen 

. Need to check running config of R2 & R3 for interface 

Sh run -------------------------- Interface Serial0/0/0/0.12 on R2 

Sh run -------------------------- Interface Serial0/0/0/0 on R1 

. Change required: On R1, for IPV4 authentication of OSPF command is missing and required to configure------ ip ospf authentication message-digest 

Q10. - (Topic 6) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, and FHRP services, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

What is the solution to the fault condition? 

A. In Configuration mode, using the interface port-channel 13 command, then configure switchport trunk allowed vlan none followed by switchport trunk allowed vlan 20,200 commands. 

B. In Configuration mode, using the interface port-channel 13, port-channel 23, then configure switchport trunk none allowed vlan none followed by switchport trunk allowed vlan 10,200 commands. 

C. In Configuration mode, using the interface port-channel 23 command, then configure switchport trunk allowed vlan none followed by switchport trunk allowed vlan 20,200 commands. 

D. In Configuration mode, using the interface port-channel 23, port-channel, then configure switchport trunk allowed vlan none followed by switchport trunk allowed vlan 10,20,200 commands. 

Answer:

Explanation: 

We need to allow VLANs 10 and 200 on the trunks to restore full connectivity. This can be accomplished by issuing the "switchport trunk allowed vlan 10,200" command on the port channels used as trunks in DSW1. 

Q11. - (Topic 16) 

The implementations group has been using the test bed to do a ‘proof-of-concept'. After several changes to the network addressing, routing schemes, a trouble ticket has been opened indicating that the loopback address on R1 (2026::111:1) is not able to ping the loopback address on DSW2(2026::102:1). 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

The fault condition is related to which technology? 

A. NTP 

B. IPv4 OSPF Routing 

C. IPv6 OSPF Routing 

D. IPv4 layer 3 security 

Answer:

Explanation: 

On R2, IPV6 OSPF routing, configuration is required to add ipv6 ospf 6 area 0 under interface serial 0/0/0.23 

Q12. - (Topic 11) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

On which device is the fault condition located? 

A. R1 

B. R2 

C. R3 

D. R4 

E. DSW1 

F. DSW2 

G. ASW1 

Answer:

Explanation: 

On R1, we need to permit IP 209.65.200.222/30 under the access list. 

Q13. - (Topic 4) 

Scenario: 

You have been asked by your customer to help resolve issues in their routed network. Their network engineer has deployed HSRP. On closer inspection HSRP doesn't appear to be operating properly and it appears there are other network problems as well. You are to provide solutions to all the network problems. 

You have received notification from network monitoring system that link between R1 and R5 is down and you noticed that the active router for HSRP group 1 has not failed over to the standby router for group 1. You are required to troubleshoot and identify the issue. 

A. There is an HSRP group track command misconfiguration 

B. There is an HSRP group priority misconfiguration 

C. There is an HSRP authentication misconfiguration 

D. There is an HSRP group number mismatch 

E. This is not an HSRP issue; this is routing issue. 

Answer:

Explanation: 

When looking at the HSRP configuration of R1, we see that tracking has been enabled, but that it is not tracking the link to R5, only the link to R2: 

R1 should be tracking the Eth 0/1 link, not 0/0 to achieve the desired affect/ 

Q14. - (Topic 7) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

What is the solution to the fault condition? 

A. R1 

B. R2 

C. R3 

D. R4 

E. DSW1 

F. DSW2 

G. ASW1 

H. ASW2 

Answer:

Explanation: 

The problem here is that VLAN 10 is not configured on the proper interfaces on switch ASW1. 

Q15. - (Topic 1)

When troubleshooting an EIGRP connectivity problem, you notice that two connected EIGRP routers are not becoming EIGRP neighbors. A ping between the two routers was successful. What is the next thing that should be checked?

A. Verify that the EIGRP hello and hold timers match exactly.

B. Verify that EIGRP broadcast packets are not being dropped between the two routers with the show ip EIGRP peer command.

C. Verify that EIGRP broadcast packets are not being dropped between the two routers with the show ip EIGRP traffic command.

D. Verify that EIGRP is enabled for the appropriate networks on the local and neighboring router.

Answer: D

Q16. - (Topic 12) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

What is the solution to the fault condition? 

A. In Configuration mode, using the interface range Fa 1/0/1 – 2, then no switchport port-security interface configuration commands. Then in exec mode clear errdisable interface fa 1/01 – 2 vlan 10 command 

B. In Configuration mode, using the interface range Fa 1/0/1 – 2, then no switchport port-security, followed by shutdown, no shutdown interface configuration commands. 

C. In Configuration mode, using the interface range Fa 1/0/1 – 2, then no switchport port-security interface configuration commands. 

D. In Configuration mode, using the interface range Fa 1/0/1 – 2, then no switchport port-security interface configuration commands. Then in exec mode clear errdisable interface fa 1/0/1, then clear errdisable interface fa 1/0/2 commands. 

Answer:

Explanation: 

On ASW1, we need to remove port-security under interface fa1/0/1 & fa1/0/2. 

Reference: http://www.cisco.com/en/US/tech/ABC389/ABC621/technologies_tech_note09186a00806c d87b.shtml 

Q17. - (Topic 10) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, 

NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

What is the solution to the fault condition? 

A. Under the interface Serial0/0/0 configuration enter the ip nat inside command. 

B. Under the interface Serial0/0/0 configuration enter the ip nat outside command. 

C. Under the ip access-list standard nat_trafic configuration enter the permit 10.2.0.0 

0.0.255.255 command. 

D. Under the ip access-list standard nat_trafic configuration enter the permit 209.65.200.0 

0.0.0.255 command. 

Answer:

Explanation: 

On R1 we need to add the client IP address for reachability to server to the access list that is used to specify which hosts get NATed. 

Q18. - (Topic 15) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

The fault condition is related to which technology? 

A. Under the global configuration mode enter no access-list 10 command. 

B. Under the global configuration mode enter no access-map vlan 10 command. 

C. Under the global configuration mode enter no vlan access-map test1 10 command. 

D. Under the global configuration mode enter no vlan filter test1 vlan-list 10 command. 

Answer:

Explanation: 

On DSW1, VALN ACL, Need to delete the VLAN access-map test1 whose action is to drop access-list 10; specifically 10.2.1.3 

Q19. - (Topic 19) 

The implementation group has been using the test bed to do an IPv6 'proof-of-concept1. After several changes to the network addressing and routing schemes, a trouble ticket has been opened indicating that the loopback address on R1 (2026::111:1) is not able to ping the loopback address on DSW2 (2026::102:1).

Use the supported commands to isolate the cause of this fault and answer the following question.

The fault condition is related to which technology?

A. NTP

B. IPv4 OSPF Routing

C. IPv6 OSPF Routing

D. IPv4 layer 3 security

Answer: C

Explanation:

Since we are unable to ping the IPv6 address, the problem is with IPv6 OSPF Routing.

START 300-135 EXAM