Q1. - (Topic 2)
A customer network engineer has made configuration changes that have resulted in some loss of connectivity. You have been called in to evaluate a switch network and suggest resolutions to the problems.
Refer to the topology.
SW1 Switch Management IP address is not pingable from SW4. What could be the issue?
A. Management VLAN not allowed in the trunk links between SW1 and SW4
B. Management VLAN not allowed in the trunk links between SW1 and SW2
C. Management VLAN not allowed in the trunk link between SW2 and SW4
D. Management VLAN ip address on SW4 is configured in wrong subnet
E. Management VLAN interface is shutdown on SW4
Answer: D
Explanation:
In the network, VLAN 300 is called the Management VLAN. Based on the configurations shown below, SW1 has VLAN 300 configured with the IP address of 192.168.10.1/24, while on SW4 VLAN 300 has an IP address of 192.168.100.4/24, which is not in the same subnet.
Q2. - (Topic 11)
The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address.
Use the supported commands to isolated the cause of this fault and answer the following questions.
The fault condition is related to which technology?
A. BGP
B. NTP
C. IP NAT
D. IPv4 OSPF Routing
E. IPv4 OSPF Redistribution
F. IPv6 OSPF Routing
G. IPv4 layer 3 security
Answer: G
Explanation:
On R1, we need to permit IP 209.65.200.222/30 under the access list.
Q3. - (Topic 10)
The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing schemes, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address.
Use the supported commands to isolated the cause of this fault and answer the following questions.
On which device is the fault condition located?
A. R1
B. R2
C. R3
D. R4
E. DSW1
F. DSW2
G. ASW1
Answer: A
Explanation:
On R1 we need to add the client IP address for reachability to server to the access list that is used to specify which hosts get NATed.
Q4. - (Topic 5)
Scenario:
A customer network engineer has edited their OSPF network configuration and now your customer is experiencing network issues. They have contacted you to resolve the issues and return the network to full functionality.
The OSPF neighbour relationship has been lost between R1 and R3. What is causing this problem?
A. The serial interface in R1 should be taken out of the shutdown state.
B. A neighbor statement needs to be configured in R1 and R3 pointing at each other.
C. The R1 network type should be changed to point-to-multipoint non-broadcast.
D. The hello, dead and wait timers on R1 need to be reconfigured to match the values on R3.
Answer: C
Explanation:
In order for two OSPF routers to become neighbors, they must have matching network types across the links. In this case, we see that R1 has been configured as non-broadcast and R3 is using point to point non-broadcast.
This can be seen by issuing the "show running-config" command on each router, or the "show ip ospf interface" command:
Topic 6, Ticket 1: Switch Port Trunk
Topology Overview (Actual Troubleshooting lab design is for below network design)
. Client Should have IP 10.2.1.3
. EIGRP 100 is running between switch DSW1 & DSW2
. OSPF (Process ID 1) is running between R1, R2, R3, R4
. Network of OSPF is redistributed in EIGRP
. BGP 65001 is configured on R1 with Webserver cloud AS 65002
. HSRP is running between DSW1 & DSW2 Switches
The company has created the test bed shown in the layer 2 and layer 3 topology exhibits.
This network consists of four routers, two layer 3 switches and two layer 2 switches.
In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1.
DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary.
R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP's network. Because the company's address space is in the private range.
R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network.
ASW1 and ASW2 are layer 2 switches.
NTP is enabled on all devices with 209.65.200.226 serving as the master clock source.
The client workstations receive their IP address and default gateway via R4's DHCP server.
The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2.
In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6.
DSW1, DSW2 and R4 are running RIPng process name RIP_ZONE.
The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running
over the underlying IPv4 OSPF domain. Redistrution is enabled where necessary.
Recently the implementation group has been using the test bed to do a ‘proof-of-concept' on several implementations. This involved changing the configuration on one or more of the devices. You will be presented with a series of trouble tickets related to issues introduced during these configurations.
Note: Although trouble tickets have many similar fault indications, each ticket has its own issue and solution.
Each ticket has 3 sub questions that need to be answered & topology remains same.
Question-1 Fault is found on which device,
Question-2 Fault condition is related to,
Question-3 What exact problem is seen & what needs to be done for solution
Client is unable to ping IP 209.65.200.241
Solution
Steps need to follow as below:-
. When we check on client 1 & Client 2 desktop we are not receiving DHCP address from R4
Ipconfig ----- Client will be getting 169.X.X.X
. On ASW1 port Fa1/0/ 1 & Fa1/0/2 access port VLAN 10 was assigned which is using IP address 10.2.1.0/24
Sh run ------- & check for running config of int fa1/0/1 & fa1/0/2
====================================================
interface FastEthernet1/0/1switchport mode accessswitchport access vlan 10interface
FastEthernet1/0/2switchport mode accessswitchport access vlan 10
====================================================
. We need to check on ASW 1 trunk port the trunk Po13 & Po23 were receiving VLAN 20 & 200 but not VLAN 10 so that switch could not get DHCP IP address and was failing to reach IP address of Internet
. Change required: On ASW1 below change is required for switch-to-switch Connectivity..
int range portchannel13,portchannel23 switchport trunk allowed vlan none switchport trunk allowed vlan 10,200
Q5. - (Topic 1)
Exhibit:
A network administrator is troubleshooting an EIGRP connection between RouterA, IP address 10.1.2.1, and RouterB, IP address 10.1.2.2. Given the debug output on RouterA, which two statements are true? (Choose two.)
A. RouterA received a hello packet with mismatched autonomous system numbers.
B. RouterA received a hello packet with mismatched hello timers.
C. RouterA received a hello packet with mismatched authentication parameters.
D. RouterA received a hello packet with mismatched metric-calculation mechanisms.
E. RouterA will form an adjacency with RouterB.
F. RouterA will not form an adjacency with RouterB.
Answer: D,F
Q6. - (Topic 9)
The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address.
Use the supported commands to isolated the cause of this fault and answer the following questions.
The fault condition is related to which technology?
A. BGP
B. NTP
C. IP NAT
D. IPv4 OSPF Routing
E. IPv4 OSPF Redistribution
F. IPv6 OSPF Routing
G. IPv4 layer 3 security
Answer: A Explanation:
On R1 under router the BGP process Change neighbor 209.56.200.226 remote-as 65002 statement to neighbor 209.65.200.226 remote-as 65002
Q7. - (Topic 5)
Scenario: A customer network engineer has edited their OSPF network configuration and now your customer is experiencing network issues. They have contacted you to resolve the issues and return the network to full functionality.
The 6.6.0.0 subnets are not reachable from R4. how should the problem be resolved?
A. Edit access-list 46 in R6 to permit all the 6.6.0.0 subnets
B. Apply access-list 46 in R6 to a different interface
C. Apply access-list 1 as a distribute-list out under router ospf 100 in R4
D. Remove distribute-list 64 out on R6 E. Remove distribute-list 1 in ethernet 0/1 in R4
F. Remove distribute-list 1 in ethernet 0/0 in R4
Answer: D
Explanation:
Here we see from the running configuration of R6 that distribute list 64 is being used in the outbound direction to all OSPF neighbors.
However, no packets will match the 6.6.0.0 in this access list because the first line blocks all 6.0.0.0 networks, and since the 6.6.0.0 networks will also match the first line of this ACL, these OSPF networks will not be advertised because they are first denied in the first line of the ACL.
Q8. - (Topic 10)
The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address.
Use the supported commands to isolated the cause of this fault and answer the following questions.
The fault condition is related to which technology?
A. BGP
B. NTP
C. IP NAT
D. IPv4 OSPF Routing
E. IPv4 OSPF Redistribution
F. IPv6 OSPF Routing
G. IPv4 layer 3 security
Answer: C
Explanation:
On R1 we need to add the client IP address for reachability to server to the access list that is used to specify which hosts get NATed.
Topic 11, Ticket 6 : R1 ACL
Topology Overview (Actual Troubleshooting lab design is for below network design)
. Client Should have IP 10.2.1.3
. EIGRP 100 is running between switch DSW1 & DSW2
. OSPF (Process ID 1) is running between R1, R2, R3, R4
. Network of OSPF is redistributed in EIGRP
. BGP 65001 is configured on R1 with Webserver cloud AS 65002
. HSRP is running between DSW1 & DSW2 Switches
The company has created the test bed shown in the layer 2 and layer 3 topology exhibits.
This network consists of four routers, two layer 3 switches and two layer 2 switches.
In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1.
DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary.
R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP's network. Because the company's address space is in the private range.
R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network.
ASW1 and ASW2 are layer 2 switches.
NTP is enabled on all devices with 209.65.200.226 serving as the master clock source.
The client workstations receive their IP address and default gateway via R4's DHCP server.
The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2.
In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6.
DSW1, DSW2 and R4 are running RIPng process name RIP_ZONE.
The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running over the underlying IPv4 OSPF domain. Redistribution is enabled where necessary.
Recently the implementation group has been using the test bed to do a ‘proof-of-concept' on several implementations. This involved changing the configuration on one or more of the devices. You will be presented with a series of trouble tickets related to issues introduced during these configurations.
Note: Although trouble tickets have many similar fault indications, each ticket has its own issue and solution.
Each ticket has 3 sub questions that need to be answered & topology remains same.
Question-1 Fault is found on which device,
Question-2 Fault condition is related to,
Question-3 What exact problem is seen & what needs to be done for solution
Client is unable to ping IP 209.65.200.241…
Solution
Steps need to follow as below:-
. When we check on client 1 & Client 2 desktop we are not receiving DHCP address from R4
. Ipconfig ----- Client will be receiving IP address 10.2.1.3
. IP 10.2.1.3 will be able to ping from R4 , R3, R2, R1
. Look for BGP Neighbourship
. Sh ip bgp summary ----- State of BGP will be in active state. This means connectivity issue between serial
. Check for running config. i.e sh run --- over here check for access-list configured on interface as BGP is down (No need to check for NAT configuration as its configuration should be right as first need to bring BGP up)
. In above snapshot we can see that access-list of edge_security on R1 is not allowing wan IP network
. Change required: On R1, we need to permit IP 209.65.200.222/30 under the access list.
Q9. - (Topic 18)
The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing schemes, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address.
Use the supported commands to isolate the cause of this fault and answer the following question.
The fault condition is related to which technology?
A. NTP
B. IP DHCP Server
C. Ipv4 OSPF Routing
D. Ipv4 EIGRP Routing.
E. Ipv4 Route Redistribution.
F. Ipv6 RIP Routing
G. Ipv6 OSPF Routing
H. Ipv4 and Ipv6 Interoperability
I. Ipv4 layer 3 security.
Answer: B
Explanation:
On R4 the DHCP IP address is not allowed for network 10.2.1.0/24 which clearly shows the problem lies on R4 & the problem is with DHCP
Topic 19, Ticket 14: IPv6 Routing Issue 1
Topology Overview (Actual Troubleshooting lab design is for below network design)
-Client Should have IP 10.2.1.3
-EIGRP 100 is running between switch DSW1 & DSW2
-OSPF (Process ID 1) is running between R1, R2, R3, R4
-Network of OSPF is redistributed in EIGRP
-BGP 65001 is configured on R1 with Webserver cloud AS 65002
-HSRP is running between DSW1 & DSW2 Switches
The company has created the test bed shown in the layer 2 and layer 3 topology exhibits.
This network consists of four routers, two layer 3 switches and two layer 2 switches.
In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1.
DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary.
R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP's network. Because the company's address space is in the private range.
R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network.
ASW1 and ASW2 are layer 2 switches.
NTP is enabled on all devices with 209.65.200.226 serving as the master clock source.
The client workstations receive their IP address and default gateway via R4's DHCP server.
The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2.
In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6.
DSW1, DSW2 and R4 are running RIPng process name RIP_ZONE.
The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running over the underlying IPv4 OSPF domain. Redistrution is enabled where necessary.
Recently the implementation group has been using the test bed to do a ‘proof-of-concept' on several implementations. This involved changing the configuration on one or more of the devices.
You will be presented with a series of trouble tickets related to issues introduced during these configurations.
Note: Although trouble tickets have many similar fault indications, each ticket has its own issue and solution.
Each ticket has 3 sub questions that need to be answered & topology remains same.
Question-1 Fault is found on which device,
Question-2 Fault condition is related to,
Question-3 What exact problem is seen & what needs to be done for solution
===============================================================================
Q10. - (Topic 15)
The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address.
Use the supported commands to isolated the cause of this fault and answer the following questions.
The fault condition is related to which technology?
A. NTP
B. IP DHCP Helper
C. IPv4 EIGRP Routing
D. IPv6 RIP Routing
E. IPv4 layer 3 security
F. Switch-to-Switch Connectivity
G. Loop Prevention
H. Access Vlans
I. Port Security
J. VLAN ACL / Port ACL
K. Switch Virtual Interface
Answer: J
Explanation:
On DSW1, VALN ACL, Need to delete the VLAN access-map test1 whose action is to drop access-list 10; specifically 10.2.1.3
Q11. - (Topic 8)
The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241
address.
Use the supported commands to isolated the cause of this fault and answer the following questions.
The fault condition is related to which technology?
A. BGP
B. NTP
C. IP NAT
D. IPv4 OSPF Routing
E. IPv4 OSPF Redistribution
F. IPv6 OSPF Routing
G. IPv4 layer 3 security
Answer: D
Explanation:
On R1, for IPV4 authentication of OSPF the command is missing and required to configure------ ip ospf authentication message-digest
Q12. - (Topic 19)
The implementation group has been using the test bed to do an IPv6 'proof-of-concept1. After several changes to the network addressing and routing schemes, a trouble ticket has been opened indicating that the loopback address on R1 (2026::111:1) is not able to ping the loopback address on DSW2 (2026::102:1).
Use the supported commands to isolate the cause of this fault and answer the following question.
On which device is the fault condition located?
A. R1
B. R2
C. R3
D. R4
E. DSW1
F. DSW2
G. ASW1
H. ASW2
Answer: B
Explanation:
Start to troubleshoot this by pinging the loopback IPv6 address of DSW2 (2026::102:1). This can be pinged from DSW1, R4, and R3, which leads us to believe that the issue is with R2. Going further, we can see that R2 only has an IPV6 OSPF neighbor of R1, not R3:
We can then see that OSPFv3 has not been enabled on the interface to R3:
So the problem is with R2, related to IPV6 Routing, and the fix is to enable the "ipv6 ospf 6 area 0" command under the serial 0/0/0.23 interface.
Q13. - (Topic 1)
Which three features are benefits of using GRE tunnels in conjunction with IPsec for building siteto-site VPNs? (Choose three.)
A. allows dynamic routing over the tunnel
B. supports multi-protocol (non-IP) traffic over the tunnel
C. reduces IPsec headers overhead since tunnel mode is used
D. simplifies the ACL used in the crypto map
E. uses Virtual Tunnel Interface (VTI) to simplify the IPsec VPN configuration
Answer: A,B,D
Q14. - (Topic 17)
The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing schemes, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened DSW1 will not become the active router for HSRP group 10.
Use the supported commands to isolated the cause of this fault and answer the following questions.
On which device is the fault condition located?
A. R1
B. R2
C. R3
D. R4
E. DSW1
F. DSW2
G. ASW1
H. ASW2
Answer: E
Explanation:
DSW references the wrong track ID number.
Topic 18, Ticket 13 : DHCP Issue
Topology Overview (Actual Troubleshooting lab design is for below network design)
. Client Should have IP 10.2.1.3
. EIGRP 100 is running between switch DSW1 & DSW2
. OSPF (Process ID 1) is running between R1, R2, R3, R4
. Network of OSPF is redistributed in EIGRP
. BGP 65001 is configured on R1 with Webserver cloud AS 65002
. HSRP is running between DSW1 & DSW2 Switches
The company has created the test bed shown in the layer 2 and layer 3 topology exhibits.
This network consists of four routers, two layer 3 switches and two layer 2 switches.
In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1.
DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary.
R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP's network. Because the company's address space is in the private range.
R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network.
ASW1 and ASW2 are layer 2 switches.
NTP is enabled on all devices with 209.65.200.226 serving as the master clock source.
The client workstations receive their IP address and default gateway via R4's DHCP server.
The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2.
In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6.
DSW1, DSW2 and R4 are running RIPng process name RIP_ZONE.
The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running over the underlying IPv4 OSPF domain. Redistrution is enabled where necessary.
Recently the implementation group has been using the test bed to do a ‘proof-of-concept' on several implementations. This involved changing the configuration on one or more of the devices. You will be presented with a series of trouble tickets related to issues introduced during these configurations.
Note: Although trouble tickets have many similar fault indications, each ticket has its own issue and solution.
Each ticket has 3 sub questions that need to be answered & topology remains same.
Question-1 Fault is found on which device,
Question-2 Fault condition is related to,
Question-3 What exact problem is seen & what needs to be done for solution
Solution
Steps need to follow as below:-
. When we check on client 1 & Client 2 desktop we are not receiving DHCP address from R4
ipconfig ----- Client will be receiving Private IP address 169.254.X.X
. From ASW1 we can ping 10.2.1.254….
. On ASW1 VLAN10 is allowed in trunk & access command will is enabled on interface but DHCP IP address is not recd.
On R4 the DHCP IP address is not allowed for network 10.2.1.0/24 which clearly shows the problem lies on R4 & the problem is with DHCP
Q15. - (Topic 2)
A customer network engineer has made configuration changes that have resulted in some loss of connectivity. You have been called in to evaluate a switch network and suggest resolutions to the problems.
You have configured PVST+ load balancing between SW1 and the New_Switch in such a way that both the links E2/2 and E2/3 are utilized for traffic flow, which component of the configuration is preventing PVST+ load balancing between SW1 and SW2 links
A. Port priority configuration on SW1
B. Port priority configuration on the New_Switch
C. Path cost configuration on SW1
D. Path cost configuration on the New_Switch
Answer: D
Explanation:
Here is the configuration found on the New_Switch:
This causes the port cost for link eth 1/3 to increase the path cost to 250 for all VLANs, making that link less preferred so that only eth 1/2 will be used.
Topic 3, Troubleshooting EIGRP
11. - (Topic 3)
Scenario:
You have been brought in to troubleshoot an EIGRP network. You have resolved the initial issue between routers R2 and R4, but another issue remains. You are to locate the problem and suggest solution to resolve the issue.
The customer has disabled access to the show running-config command.
The network segment between R2 and R4 has become disconnected from the remainder of the network. How should this issue be resolved?
A. Change the autonomous system number in the remainder of the network to be consistent with R2 and R4.
B. Move the 192.168.24.0 network to the EIGRP 1 routing process in R2 and R4.
C. Enable the R2 and R4 router interfaces connected to the 192.168.24.0 network.
D. Remove the distribute-list command from the EIGRP 200 routing process in R2.
E. Remove the distribute-list command from the EIGRP 100 routing process in R2.
Q16. - (Topic 14)
The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address.
Use the supported commands to isolated the cause of this fault and answer the following questions.
On which device is the fault condition located?
A. R1
B. R2
C. R3
D. R4
E. DSW1
F. DSW2
G. ASW1
H. ASW2
Answer: D
Explanation:
The EIGRP AS number configured on R4 is wrong.
Q17. - (Topic 20)
The implementation group has been using the test bed to do an IPv6 'proof-of-concept1.
After several changes to the network addressing and routing schemes, a trouble ticket has been opened indicating that the loopback address on R1 (2026::111:1) is not able to ping the loopback address on DSW2 (2026::102:1).
The fault condition is related to which technology?
A. NTP
B. IP DHCP Server
C. IPv4 OSPF Routing
D. IPv4 EIGRP Routing
E. IPv4 Route Redistribution
F. IPv6 RIP Routing
G. IPv6 OSPF Routing
H. IPV4 and IPV6 Interoperability
I. IPv4 layer 3 security
Answer: G
Explanation:
As explained earlier, the problem is with route redistribution on R4 of not redistributing RIP routes into OSPF for IPV6.
Q18. - (Topic 12)
The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241
address.
Use the supported commands to isolated the cause of this fault and answer the following questions.
On which device is the fault condition located?
A. R1
B. R2
C. R3
D. R4
E. DSW1
F. DSW2
G. ASW1
H. ASW2
Answer: G
Explanation:
port security needs is configured on ASW1.
Q19. - (Topic 16)
The implementations group has been using the test bed to do a ‘proof-of-concept'. After several changes to the network addressing, routing schemes, a trouble ticket has been opened indicating that the loopback address on R1 (2026::111:1) is not able to ping the loopback address on DSW2(2026::102:1).
Use the supported commands to isolated the cause of this fault and answer the following questions.
The fault condition is related to which technology?
A. NTP
B. IPv4 OSPF Routing
C. IPv6 OSPF Routing
D. IPv4 layer 3 security
Answer: C
Explanation:
On R2, IPV6 OSPF routing, configuration is required to add ipv6 ospf 6 area 0 under interface serial 0/0/0.23